Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Rep ; 14(1): 4631, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409237

RESUMO

Of all methods exercised in modern molecular biology, modification of cellular properties through the introduction or removal of nucleic acids is one of the most fundamental. As such, several methods have arisen to promote this process; these include the condensation of nucleic acids with calcium, polyethylenimine or modified lipids, electroporation, viral production, biolistics, and microinjection. An ideal transfection method would be (1) low cost, (2) exhibit high levels of biological safety, (3) offer improved efficacy over existing methods, (4) lack requirements for ongoing consumables, (5) work efficiently at any scale, (6) work efficiently on cells that are difficult to transfect by other methods, and (7) be capable of utilizing the widest array of existing genetic resources to facilitate its utility in research, biotechnical and clinical settings. To address such issues, we describe here Pressure-jump-poration (PJP), a method using rapid depressurization to transfect even difficult to modify primary cell types such as embryonic stem cells. The results demonstrate that PJP can be used to introduce an array of genetic modifiers in a safe, sterile manner. Finally, PJP-induced transfection in primary versus transformed cells reveals a surprising dichotomy between these classes which may provide further insight into the process of cellular transformation.


Assuntos
Eletroporação , Ácidos Nucleicos , Pressão Hidrostática , Transfecção , Eletroporação/métodos , Células Cultivadas
2.
Toxicol Sci ; 198(2): 233-245, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38230816

RESUMO

Idiosyncratic drug reactions are rare but serious adverse drug reactions unrelated to the known therapeutic properties of the drug and manifest in only a small percentage of the treated population. Animal models play an important role in advancing mechanistic studies examining idiosyncratic drug reactions. However, to be useful, they must possess similarities to those seen clinically. Although mice currently represent the dominant mammalian genetic model, rats are advantageous in many areas of pharmacologic study where their physiology can be examined in greater detail and is more akin to that seen in humans. In the area of immunology, this includes autoimmune responses and susceptibility to diabetes, in which rats more accurately mimic disease states in humans compared with mice. For example, oral nevirapine treatment can induce an immune-mediated skin rash in humans and rats, but not in mice due to the absence of the sulfotransferase required to form reactive metabolites of nevirapine within the skin. Using CRISPR-mediated gene editing, we developed a modified line of transgenic rats in which a segment of IgG-like ectodomain containing the core PD-1 interaction motif containing the native ligand and therapeutic antibody domain in exon 2 was deleted. Removal of this region critical for mediating PD-1/PD-L1 interactions resulted in animals with an increased immune response resulting in liver injury when treated with amodiaquine.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nevirapina , Humanos , Ratos , Camundongos , Animais , Nevirapina/toxicidade , Nevirapina/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Sistemas CRISPR-Cas , Modelos Animais , Fígado/metabolismo , Mamíferos/metabolismo
3.
Research (Wash D C) ; 6: 0247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795337

RESUMO

Despite substantial progress in the treatment of castration-resistant prostate cancer (CRPC), including radiation therapy and immunotherapy alone or in combination, the response to treatment remains poor due to the hypoxic and immunosuppressive nature of the tumor microenvironment. Herein, we exploited the bioreactivity of novel polymer-lipid manganese dioxide nanoparticles (PLMDs) to remodel the tumor immune microenvironment (TIME) by increasing the local oxygen levels and extracellular pH and enhancing radiation-induced immunogenic cell death. This study demonstrated that PLMD treatment sensitized hypoxic human and murine CRPC cells to radiation, significantly increasing radiation-induced DNA double-strand breaks and ultimately cell death, which enhanced the secretion of damage-associated molecular patterns, attributable to the induction of autophagy and endoplasmic reticulum stress. Reoxygenation via PLMDs also polarized hypoxic murine RAW264.7 macrophages toward the M1 phenotype, enhancing tumor necrosis factor alpha release, and thus reducing the viability of murine CRPC TRAMP-C2 cells. In a syngeneic TRAMP-C2 tumor model, intravenous injection of PLMDs suppressed, while radiation alone enhanced recruitment of regulatory T cells and myeloid-derived suppressor cells. Pretreatment with PLMDs followed by radiation down-regulated programmed death-ligand 1 and promoted the infiltration of antitumor CD8+ T cells and M1 macrophages to tumor sites. Taken together, TIME modulation by PLMDs plus radiation profoundly delayed tumor growth and prolonged median survival compared with radiation alone. These results suggest that PLMDs plus radiation is a promising treatment modality for improving therapeutic efficacy in radioresistant and immunosuppressive solid tumors.

4.
Pharmaceutics ; 15(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37514044

RESUMO

Maternal immune activation (MIA) during pregnancy is linked to neurodevelopmental disorders in humans. Similarly, the TLR7 agonist imiquimod alters neurodevelopment in rodents. While the mechanisms underlying MIA-mediated neurodevelopmental changes are unknown, they could involve dysregulation of amino acid transporters essential for neurodevelopment. Therefore, we sought to determine the nature of such transporter changes in both imiquimod-treated rats and human placentas during infection. Pregnant rats received imiquimod on gestational day (GD)14. Transporter expression was measured in placentas and fetal brains via qPCR (GD14.5) and immunoblotting (GD16). To monitor function, fetal brain amino acid levels were measured by HPLC on GD16. Gene expression in the cortex of female fetal brains was further examined by RNAseq on GD19. In human placentas, suspected active infection was associated with decreased ASCT1 and SNAT2 protein expression. Similarly, in imiquimod-treated rats, ASCT1 and SNAT2 protein was also decreased in male placentas, while EAAT2 was decreased in female placentas. CAT3 was increased in female fetal brains. Consistent with this, imiquimod altered amino acid levels in fetal brains, while RNAseq demonstrated changes in expression of several genes implicated in autism. Thus, imiquimod alters amino acid transporter levels in pregnant rats, and similar changes occur in human placentas during active infection. This suggests that changes in expression of amino acid transporters may contribute to effects mediated by MIA toward altered neurodevelopment.

5.
Adv Sci (Weinh) ; 10(12): e2207238, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808713

RESUMO

Finding effective disease-modifying treatment for Alzheimer's disease remains challenging due to an array of factors contributing to the loss of neural function. The current study demonstrates a new strategy, using multitargeted bioactive nanoparticles to modify the brain microenvironment to achieve therapeutic benefits in a well-characterized mouse model of Alzheimer's disease. The application of brain-penetrating manganese dioxide nanoparticles significantly reduces hypoxia, neuroinflammation, and oxidative stress; ultimately reducing levels of amyloid ß plaques within the neocortex. Analyses of molecular biomarkers and magnetic resonance imaging-based functional studies indicate that these effects improve microvessel integrity, cerebral blood flow, and cerebral lymphatic clearance of amyloid ß. These changes collectively shift the brain microenvironment toward conditions more favorable to continued neural function as demonstrated by improved cognitive function following treatment. Such multimodal disease-modifying treatment may bridge critical gaps in the therapeutic treatment of neurodegenerative disease.


Assuntos
Doença de Alzheimer , Encéfalo , Nanopartículas Metálicas , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipóxia Celular , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas Metálicas/química , Estresse Oxidativo , Polímeros/química , Encéfalo/metabolismo
6.
Fluids Barriers CNS ; 19(1): 92, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419095

RESUMO

BACKGROUND: Folates are a family of B9 vitamins that serve as one-carbon donors critical to biosynthetic processes required for the development and function of the central nervous system (CNS) in mammals. Folate transport is mediated by three highly specific systems: (1) folate receptor alpha (FRα; FOLR1/Folr1), (2) the reduced folate-carrier (RFC; SLC19A1/Slc19a1) and (3) the proton-coupled folate transporter (PCFT; SLC46A1/Slc46a1). Folate transport into and out of the CNS occurs at the blood-cerebrospinal fluid barrier (BCSFB), mediated by FRα and PCFT. Impairment of folate transport at the BCSFB results in cerebral folate deficiency in infants characterized by severe neurological deficiencies and seizures. In contrast to the BCSFB, CNS folate transport at other brain barriers and brain parenchymal cells has not been extensively investigated. The aim of this study is to characterize folate transport systems in the murine CNS at several known barriers encompassing the BCSFB, arachnoid barrier (AB), blood-brain barrier (BBB) and parenchymal cells (astrocytes, microglia, neurons). METHODS: Applying immunohistochemistry, localization of folate transport systems (RFC, PCFT, FRα) was examined at CNS barriers and parenchymal sites in wildtype (C57BL6/N) mice. Subcellular localization of the folate transport systems was further assessed in an in vitro model of the mouse AB. Gene and protein expression was analyzed in several in vitro models of brain barriers and parenchyma by qPCR and western blot analysis. RESULTS: RFC, PCFT, and FRα expression was localized within the BCSFB and BBB consistent with previous reports. Only RFC and PCFT expression was detected at the AB. Varied levels of RFC and PCFT expression were detected in neuronal and glial cells. CONCLUSIONS: Localization of RFC and PCFT within the AB, described here for the first time, suggest that AB may contribute to folate transport between the peripheral circulation and the CSF. RFC and PCFT expression observed in astrocytes and microglia is consistent with the role that one or both of these transporters may play in delivering folates into cells within brain parenchyma. These studies provide insights into mechanisms of folate transport in the CNS and may enhance our understanding of the critical role folates play in neurodevelopment and in the development of novel treatment strategies for disorders of brain folate deficiency due to impaired transporter function.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Camundongos , Transporte de Íons , Barreira Hematoencefálica , Ácido Fólico , Mamíferos , Transportador de Folato Acoplado a Próton
7.
Mol Pharm ; 19(6): 1722-1765, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587783

RESUMO

Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.


Assuntos
Nanomedicina , Nanopartículas , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia
8.
Exp Neurol ; 351: 114010, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167826

RESUMO

Cisplatin is a member of a widely utilized class of chemotherapeutic agent that initiates DNA damage response, cell cycle arrest, and p53-dependent apoptotic cell death in concert with DNA­platinum adduct formation. While normal programmed cell death (PCD) can occur in the developing neuroepithelium in the absence of caspase-3 within certain genetic backgrounds, we observed an absolute dependency upon this executioner caspase with respect to cisplatin-induced PCD in the developing central nervous system (CNS). We therefore examined the nature of this genotoxic injury in the CNS in vivo, in which cisplatin treatment causes widespread cellular injury consistent with hallmarks of apoptosis which are averted upon caspase-3 inhibition. Examination of cisplatin-mediated injury as a function of time revealed the presence of an alternative, delayed form of necroptosis-like cell death which manifests in Casp3-/- neuroepithelia for several days following the normal pattern of apoptosis. Together, these findings suggest a coordinated regulation of these disparate PCD pathways in response to genotoxic stress in vivo and highlight the unique and critical role which caspase-3 plays among executioner caspases in coordinating apoptotic versus necroptotic responsiveness of the developing CNS to genotoxic injury.


Assuntos
Caspases , Cisplatino , Apoptose/fisiologia , Encéfalo/metabolismo , Caspase 3/metabolismo , Caspases/metabolismo , Cisplatino/toxicidade
9.
Expert Opin Drug Deliv ; 18(7): 991-1004, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33703991

RESUMO

BACKGROUND: Successful delivery of anticancer drugs to intracellular targets requires different properties of the nanocarrier to overcome multiple transport barriers. However, few nanocarrier systems, to date, possess such properties, despite knowledge about the biological fate of inorganic and polymeric nanocarriers in relation to their fixed size, shape and surface properties. Herein, a polymer-lipid hybrid nanoparticle (PLN) system is described with size and shape transformability and its mechanisms of cellular uptake and intracellular trafficking are studied. METHODS: Pharmaceutical lipids were screened for use in transformable PLN. Mechanisms of cellular uptake and the role of fatty acid-binding proteins in intracellular trafficking of PLN were investigated in breast cancer cells. Intra-tumoral penetration and retention of doxorubicin (DOX) were evaluated by confocal microscopy. RESULTS: The lead PLNs showed time-dependent size reduction and shape change from spherical to spiky shape. This transformability of PLNs and lipid trafficking pathways facilitated intracellular transport of DOX-loaded PLN (DOX-PLN) into mitochondria and nuclei. DOX-PLN significantly increased DOX penetration and retention over free DOX or non-transformable liposomal DOX particles at 4 h post-intravenous administration. CONCLUSION: Transformability of PLN and lipid-biology interplay can be exploited to design new nanocarriers for effective drug delivery to tumor cells and intracellular targets.


Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Antineoplásicos/farmacologia , Biologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Portadores de Fármacos , Humanos , Lipídeos , Polímeros
10.
Cell Mol Neurobiol ; 41(8): 1727-1742, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32844322

RESUMO

The primary forms of cell death seen in ischemic stroke are of two major types: a necrotic/necroptotic form, and an apoptotic form that is frequently seen in penumbral regions of injury. Typically apoptotic versus necroptotic programmed cell death is described as competitive in nature, where necroptosis is often described as playing a backup role to apoptosis. In the present study, we examined the relationship between these two forms of cell death in a murine endothelin-1 model of ischemia-reperfusion injury in wildtype and caspase-3 null mice with and without addition of the pharmacologic RIPK1 phosphorylation inhibitor necrostatin-1. Analyses of ischemic brain injury were performed via both cellular and volumetric assessments, electron microscopy, TUNEL staining, activated caspase-3 and caspase-7 staining, as well as CD11b and F4/80 staining. Inhibition of caspase-3 or RIPK1 phosphorylation demonstrates significant neural protective effects which are non-additive and exhibit significant overlap in protected regions. Interestingly, morphologic analysis of the cortex demonstrates reduced apoptosis following RIPK1 inhibition. Consistent with this, RIPK1 inhibition reduces the levels of both caspase-3 and caspase-7 activation. Additionally, this protection appears independent of secondary inflammatory mediators. Together, these observations demonstrate that the necroptotic protein RIPK1 modifies caspase-3/-7 activity, ultimately resulting in decreased neuronal apoptosis. These findings thus modify the traditional exclusionary view of apoptotic/necroptotic signaling, revealing a new form of interaction between these dominant forms of cell death.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/patologia , Endotelina-1/toxicidade , Animais , Apoptose/fisiologia , Isquemia Encefálica/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
11.
Adv Healthc Mater ; 8(18): e1900543, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31348614

RESUMO

Patients with brain metastases of triple negative breast cancer (TNBC) have a poor prognosis owing to the lack of targeted therapies, the aggressive nature of TNBC, and the presence of the blood-brain barrier (BBB) that blocks penetration of most drugs. Additionally, infiltration of tumor-associated macrophages (TAMs) promotes tumor progression. Here, a terpolymer-lipid hybrid nanoparticle (TPLN) system is designed with multiple targeting moieties to first undergo synchronized BBB crossing and then actively target TNBC cells and TAMs in microlesions of brain metastases. In vitro and in vivo studies demonstrate that covalently bound polysorbate 80 in the terpolymer enables the low-density lipoprotein receptor-mediated BBB crossing and TAM-targetability of the TPLN. Conjugation of cyclic internalizing peptide (iRGD) enhances cellular uptake, cytotoxicity, and drug delivery to brain metastases of integrin-overexpressing TNBC cells. iRGD-TPLN with coloaded doxorubicin (DOX) and mitomycin C (MMC) (iRGD-DMTPLN) exhibits higher efficacy in reducing metastatic burden and TAMs than nontargeted DMTPLN or a free DOX/MMC combination. iRGD-DMTPLN treatment reduces metastatic burden by 6-fold and 19-fold and increases host median survival by 1.3-fold and 1.6-fold compared to DMTPLN or free DOX/MMC treatments, respectively. These findings suggest that iRGD-DMTPLN is a promising multitargeted drug delivery system for the treatment of integrin-overexpressing brain metastases of TNBC.


Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/secundário , Sistemas de Liberação de Medicamentos , Macrófagos/patologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Progressão da Doença , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Lipídeos/química , Camundongos , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Nanopartículas/ultraestrutura , Oligopeptídeos/química , Células RAW 264.7 , Receptores de LDL/metabolismo , Análise de Sobrevida , Distribuição Tecidual/efeitos dos fármacos
12.
Apoptosis ; 24(7-8): 578-595, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31073782

RESUMO

Over the past 30 years a number of animal models of cerebral ischemic injury have been developed. Middle cerebral artery occlusion (MCAO) in particular reproduces both ischemic and reperfusion elements and is widely utilized as a model of ischemic stroke in rodents. However substantial variability exists in this model even in clonal inbred mice due to stochastic elements of the cerebral vasculature. Models such as MCAO thus exhibit significant irreducible variabilities with respect to their zone of injury as well as inducing a sizable volume of injury to the cerebrum with damage to sub-cortical structures, conditions not typically seen for the majority of human clinical strokes. An alternative model utilizes endothelin-1 application focally to cerebral vasculature, resulting in an ischemic reperfusion injury which more closely mimics that seen in human clinical stroke. In order to further define this model we demonstrate that intra-cortical administration of ET-1 results in a highly reproducible pattern of tissue injury which is limited to the cerebral cortex, characterizing the early cellular and molecular events which occur during the first 24 h post-injury. In addition we demonstrate that caspase-3 is both necessary and sufficient to regulate a majority of cortical cell death observed during this period. The enhanced survival effects seen upon genetic deletion of caspase-3 appear to arise as a result of direct modification of cell autonomous PCD signaling as opposed to secondary effectors such as granulocyte infiltration or microglia activation. Taken together these findings detail the early mechanistic features regulating endothelin-1-mediated ischemic injury.


Assuntos
Isquemia Encefálica/induzido quimicamente , Caspase 3/metabolismo , Córtex Cerebral/efeitos dos fármacos , Endotelina-1/toxicidade , Animais , Isquemia Encefálica/patologia , Caspase 3/genética , Morte Celular/efeitos dos fármacos , Córtex Cerebral/lesões , Córtex Cerebral/patologia , Modelos Animais de Doenças , Endotelina-1/administração & dosagem , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia
13.
J Cell Mol Med ; 23(3): 1784-1797, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548903

RESUMO

Aberrant regulation of programmed cell death (PCD) has been tied to an array of human pathologies ranging from cancers to autoimmune disorders to diverse forms of neurodegeneration. Pharmacologic modulation of PCD signalling is therefore of central interest to a number of clinical and biomedical applications. A key component of PCD signalling involves the modulation of pro- and anti-apoptotic Bcl-2 family members. Among these, Bax translocation represents a critical regulatory phase in PCD. In the present study, we have employed a high-content high-throughput screen to identify small molecules which inhibit the cellular process of Bax re-distribution to the mitochondria following commitment of the cell to die. Screening of 6246 Generally Recognized As Safe compounds from four chemical libraries post-induction of cisplatin-mediated PCD resulted in the identification of 18 compounds which significantly reduced levels of Bax translocation. Further examination revealed protective effects via reduction of executioner caspase activity and enhanced mitochondrial function. Consistent with their effects on Bax translocation, these compounds exhibited significant rescue against in vitro and in vivo cisplatin-induced apoptosis. Altogether, our findings identify a new set of clinically useful small molecules PCD inhibitors and highlight the role which cAMP plays in regulating Bax-mediated PCD.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas de Fluorescência Verde/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína X Associada a bcl-2/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína X Associada a bcl-2/metabolismo
14.
J Control Release ; 246: 98-109, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-28017889

RESUMO

Brain metastasis is a fatal disease with limited treatment options and very short survival. Although systemic chemotherapy has some effect on peripheral metastases of breast cancer, it is ineffective in treating brain metastasis due largely to the blood-brain barrier (BBB). Here we developed a BBB-penetrating amphiphilic polymer-lipid nanoparticle (NP) system that efficiently delivered anti-mitotic drug docetaxel (DTX) for the treatment of brain metastasis of triple negative breast cancer (TNBC). We evaluated the biodistribution, brain accumulation, pharmacokinetics and efficacy of DTX-NP in a mouse model of brain metastasis of TNBC. Confocal fluorescence microscopy revealed extravasation of dye-loaded NPs from intact brain microvessels in healthy mice. DTX-NP also extravasated from brain microvessels and accumulated in micrometastasis lesions in the brain. Intravenously injected DTX-NPs increased the blood circulation time of DTX by 5.5-fold and the AUC0-24h in tumor-bearing brain by 5-fold compared to the clinically used DTX formulation Taxotere®. The kinetics of NPs in the brain, determined by ex vivo fluorescence imaging, showed synchronization with DTX kinetics in the brain measured by LC-MS/MS. This result confirmed successful delivery of DTX by the NPs into the brain and suggested that ex vivo fluorescence imaging of NP could be an effective and quick means for probing drug disposition in the brain. Treatment with the DTX-NP formulation delayed tumor growth by 11-fold and prolonged median survival of tumor-bearing mice by 94% compared to an equivalent dose of Taxotere®, without inducing histological changes in the major organs.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Tensoativos/metabolismo , Taxoides/administração & dosagem , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos/química , Feminino , Humanos , Camundongos SCID , Nanopartículas/química , Polímeros/metabolismo , Tensoativos/química , Taxoides/farmacocinética , Taxoides/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
16.
Behav Brain Res ; 300: 85-96, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26408450

RESUMO

Despite significant progress, many uncertainties remain regarding molecular and cellular mechanisms governing opiate tolerance. We report that loss of EphB2 receptor reverse signaling results in a marked acceleration of morphine tolerance in vivo. EphB2 null mice exhibited no significant difference in brain or blood morphine metabolism, mu opiate receptor affinity or binding capacity. Motor and sensory performance for EphB2 null mice was also comparable to controls for both morphine naïve or tolerized states. Regional distributions of mu opioid receptor, CGRP and substance P were also unaltered in EphB2 null mice. However EphB2 null mice, but not animals homozygous for kinase dead version of EphB2, exhibited significant modification of context-dependent anti-nociceptive responses following chronic morphine treatment. To verify the changes seen in EphB2 null mice arise from impairment of hippocampal learning, discreet bilateral lesions of the dorsal hippocampus were produced in wildtype mice demonstrating striking similarities to that seen in EphB2 null mice for opiate-dependent behavior. The results demonstrate that EphB2 reverse signaling plays a unique and requisite role in inhibiting the development of opiate-dependent tolerance in vivo.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem/fisiologia , Receptor EphB2/metabolismo , Analgésicos Opioides/farmacocinética , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Camundongos Knockout , Morfina/farmacocinética , Morfina/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/metabolismo , Percepção da Dor/efeitos dos fármacos , Percepção da Dor/fisiologia , Receptor EphB2/genética , Receptores Opioides mu/metabolismo , Substância P/metabolismo
17.
J Vis Exp ; (92): e52148, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25407047

RESUMO

Transfection of DNA has been invaluable for biological sciences and with recent advances to organotypic brain slice preparations, the effect of various heterologous genes could thus be investigated easily while maintaining many aspects of in vivo biology. There has been increasing interest to transfect terminally differentiated neurons for which conventional transfection methods have been fraught with difficulties such as low yields and significant losses in viability. Biolistic transfection can circumvent many of these difficulties yet only recently has this technique been modified so that it is amenable for use in mammalian tissues. New modifications to the accelerator chamber have enhanced the gene gun's firing accuracy and increased its depths of penetration while also allowing the use of lower gas pressure (50 psi) without loss of transfection efficiency as well as permitting a focused regioselective spread of the particles to within 3 mm. In addition, this technique is straight forward and faster to perform than tedious microinjections. Both transient and stable expression are possible with nanoparticle bombardment where episomal expression can be detected within 24 hr and the cell survival was shown to be better than, or at least equal to, conventional methods. This technique has however one crucial advantage: it permits the transfection to be localized within a single restrained radius thus enabling the user to anatomically isolate the heterologous gene's effects. Here we present an in-depth protocol to prepare viable adult organotypic slices and submit them to regioselective transfection using an improved gene gun.


Assuntos
Biolística/métodos , Encéfalo/fisiologia , Animais , Encéfalo/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL , Microtomia/métodos , Transfecção/métodos
18.
ACS Nano ; 8(10): 9925-40, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25307677

RESUMO

Metastatic brain cancers, in particular cancers with multiple lesions, are one of the most difficult malignancies to treat owing to their location and aggressiveness. Chemotherapy for brain metastases offers some hope. However, its efficacy is severely limited as most chemotherapeutic agents are incapable of crossing the blood-brain barrier (BBB) efficiently. Thus, a multifunctional nanotheranostic system based on poly(methacrylic acid)-polysorbate 80-grafted-starch was designed herein for the delivery of BBB-impermeable imaging and therapeutic agents to brain metastases of breast cancer. In vivo magnetic resonance imaging and confocal fluorescence microscopy were used to confirm extravasation of gadolinium and dye-loaded nanoparticles from intact brain microvessels in healthy mice. The targetability of doxorubicin (Dox)-loaded nanoparticles to intracranially established brain metastases of breast cancer was evaluated using whole body and ex vivo fluorescence imaging of the brain. Coexistence of nanoparticles and Dox in brain metastatic lesions was further confirmed by histological and microscopic examination of dissected brain tissue. Immuno-histochemical staining for caspase-3 and terminal-deoxynucleotidyl transferase dUTP nick end labeling for DNA fragmentation in tumor-bearing brain sections revealed that Dox-loaded nanoparticles selectively induced cancer cell apoptosis 24 h post-injection, while sparing normal brain cells from harm. Such effects were not observed in the mice treated with free Dox. Treatment with Dox-loaded nanoparticles significantly inhibited brain tumor growth compared to free Dox at the same dose as assessed by in vivo bioluminescence imaging of the brain metastases. These findings suggest that the multifunctional nanoparticles are promising for the treatment of brain metastases.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Doxorrubicina/uso terapêutico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Barreira Hematoencefálica , Doxorrubicina/administração & dosagem , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Imageamento por Ressonância Magnética , Camundongos
19.
J Neurosci ; 34(21): 7091-101, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849345

RESUMO

We demonstrate a role of the vitamin D receptor (VDR) in reducing cerebral soluble and insoluble amyloid-ß (Aß) peptides. Short-term treatment of two human amyloid precursor protein-expressing models, Tg2576 and TgCRND8 mice, with 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], the endogenous active ligand of VDR, resulted in higher brain P-glycoprotein (P-gp) and lower soluble Aß levels, effects negated with coadministration of elacridar, a P-gp inhibitor. Long-term treatment of TgCRND8 mice with 1,25(OH)2D3 during the period of plaque formation reduced soluble and insoluble plaque-associated Aß, particularly in the hippocampus in which the VDR is abundant and P-gp induction is greatest after 1,25(OH)2D3 treatment, and this led to improved conditioned fear memory. In mice fed a vitamin D-deficient diet, lower cerebral P-gp expression was observed, but levels were restored on replenishment with VDR ligands. The composite data suggest that the VDR is an important therapeutic target in the prevention and treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Vitamina D/análogos & derivados , Vitaminas/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Córtex Cerebral/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Vitamina D/sangue , Vitamina D/uso terapêutico
20.
Nanomedicine ; 9(6): 795-805, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23434679

RESUMO

Matrigel, a mouse sarcoma-derived basement membrane protein mixture, is frequently used to facilitate human tumor xenograft growth in rodents. Despite its known effects on tumor growth and metastasis, its impact on tumor pathophysiology and preclinical evaluation of nanomedicines in tumor xenografts has not been reported previously. Herein bilateral MDA435 tumors were established orthotopically with (Mat+) or without (Mat-) co-injection of Matrigel. Tumor perfusion, morphology and nanoparticle retention were evaluated. As compared to Mat- tumors, Mat+tumors exhibited enhanced vascular perfusion and lymphatic flow, greater blood vessel and lymphatic growth within the tumor core, and more deformation and collapse of lymphatics in tumor-associated lymph nodes. These changes were accompanied by reduced nanoparticle retention in Mat+tumors. The results suggest that Matrigel is not a passive medium for tumor growth, but rather significantly alters long-term tumor architecture. These findings have significant implications for the evaluation of therapeutic nanomedicine in xenograft mouse models. FROM THE CLINICAL EDITOR: Matrigel is utilized in facilitating human tumor xenograft growth in rodents. The authors demonstrate that Matrigel is not a passive medium for tumor growth; instead it significantly alters long-term tumor architecture, with major implications in the evaluation of therapeutic nanomedicine in xenograft mouse models.


Assuntos
Adenocarcinoma/fisiopatologia , Neoplasias da Mama/fisiopatologia , Colágeno/administração & dosagem , Xenoenxertos/fisiopatologia , Laminina/administração & dosagem , Proteoglicanas/administração & dosagem , Animais , Linhagem Celular Tumoral , Colágeno/metabolismo , Combinação de Medicamentos , Feminino , Humanos , Laminina/metabolismo , Camundongos , Nanomedicina , Nanopartículas/administração & dosagem , Nanopartículas/química , Proteoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...